EPA Method 8321B

Summit Environmental Technologies prides itself in its expansive testing capabilities in a variety of different fields. To find out if Summit conducts this test, contact us at 330-253-8211 today.

PDF IconView Actual EPA Method 8321B (PDF File)

EPA Method 8321B:
Nonvolatiles by HPLC-MS. Official Name: Solvent-Extractable Nonvolatile Compounds by High Performance Liquid Chromatography-Thermospray-Mass Spectrometry (HPLC-TSP-MS) or Ultraviolet (UV) Detection

This method provides reversed-phase high-performance liquid chromatographic (RP/HPLC) and thermospray (TS) mass spectrometric (MS) conditions and ultraviolet (UV) conditions for the detection of the target analytes. SW-846 is not intended to be an analytical training manual. Therefore, method procedures are written based on the assumption that they will be performed by analysts who are formally trained in at least the basic principles of chemical analysis and in the use of the subject technology. In addition, SW-846 methods, with the exception of required method use for the analysis of method-defined parameters, are intended to be guidance methods which contain general information on how to perform an analytical procedure or technique which a laboratory can use as a basic starting point for generating its own detailed Standard Operating Procedure (SOP), either for its own general use or for a specific project application. The performance data included in this method are for guidance purposes only, and are not intended to be and must not be used as absolute QC acceptance criteria for purposes of laboratory accreditation. This method provides reversed-phase high performance liquid chromatographic (RP-HPLC), thermospray (TSP) mass spectrometric (MS), and ultraviolet (UV) conditions for detection of the target analytes. Sample extracts can be analyzed by direct injection into the thermospray or onto a liquid chromatographic -thermospray interface. A gradient elution program is used to separate the compounds. Primary analysis may be performed by UV detection; however, positive results should be confirmed by TSP-MS. Quantitative analysis may be performed by either TSP-MS or UV detection, using either an external or internal standard approach. TSP-MS detection may be performed in either a negative ionization (discharge electrode) mode or a positive ionization mode, with a single quadrupole mass spectrometer. The use of MS-MS techniques is an option.

This method covers the use of high-performance liquid chromatography (HPLC), coupled with both thermospray-mass spectrometry (TS-MS) and an ultraviolet (UV) detector, for the determination of a variety of solvent-extractable nonvolatile compounds, including dyes, organophosphorus compounds, phenoxyacid herbicides, and carbamates.

SW-846 Online: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods

Solvents, reagents, glassware, and other sample processing hardware may yield discrete artifacts or elevated baselines, or both, causing misinterpretation of chromatograms or spectra. All of these materials must be demonstrated to be free from interferences under the conditions of the analysis by analyzing method blanks. Specific selection of reagents and purification of solvents by distillation in all-glass systems may be necessary. Refer to each method to be used for specific guidance on quality control procedures and to Chapter Four for general guidance on the cleaning of glassware. See section 4 of the method for more information on interferences.

QC Requirements:
See section 9.0 of the method for a complete discussion of Quality Control.



Method 8321B can be used in a variety of matrices; data shown here are for WATER. Performance criteria should be developed on a project-specific basis, and the laboratory should establish in-house QC performance criteria for the application of this method.


Revision Number:
Rev. 2, Feb. 2007